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Brain metastases are the most lethal complication of advanced cancer; therefore, it is critical to identify

when a tumor has the potential to metastasize to the brain. There are currently no interventions that shed

light on the potential of primary tumors to metastasize to the brain. We constructed and tested a platform

to quantitatively profile the dynamic phenotypes of cancer cells from aggressive triple negative breast can-

cer cell lines and patient derived xenografts (PDXs), generated from a primary tumor and brain metastases

from tumors of diverse organs of origin. Combining an advanced live cell imaging algorithm and artificial

intelligence, we profile cancer cell extravasation within a microfluidic blood–brain niche (μBBN) chip, to de-

tect the minute differences between cells with brain metastatic potential and those without with a PPV of

0.91 in the context of this study. The results show remarkably sharp and reproducible distinction between

cells that do and those which do not metastasize inside of the device.

Introduction

Brain metastatic spread of cancer is the most lethal event in
cancer progression. Approximately 15% of all breast cancer
patients develop a brain metastatic lesion, making it the most
frequent tissue of origin of brain metastases in women. Brain
metastases as a result of breast cancer are increasing in inci-
dence due to improved imaging technologies leading to in-
creased detection and better primary tumor management
which allows more time for metastases to develop.1–5 While
there have been significant advances in the development of
targeted therapies for some metastatic breast cancers (e.g.
anti-estrogen and anti-HER2 drugs), systemic therapy cur-

rently has a limited role in the treatment of brain metastasis.6

Moreover, there is a lack of predictive tools with clinically rel-
evant metrics to predict if subpopulations of the patient's pri-
mary tumor cells will metastasize to the brain. Because of
these challenges, we propose a platform which could be used
in a precision medicine approach to identify the likelihood of
brain metastases arising from primary lesions. We posed that
artificial intelligence could identify cancer cells which
exhibited a brain metastatic phenotype using accurate 3D
measurement of their behavior in an ex vivo BBB model
(Fig. 1).7

Three-dimensional measurement of each cancer cell in a
live patient's tumor micro-environment would be ideal. How-
ever, current technology such as MRI is unable to meet this
need because it is both expensive and lacks single cell fidelity
(0.2 mm × 0.2 mm × 1.2 mm resolutions for 7 Tesla MRI
from Siemens specification sheet). Therefore, the current
practice is to biopsy the suspected tumor and a pathologist
scans individual slices from the sample, each layer only a few
microns thick.8 An experienced pathologist can identify can-
cers and even cancer cells with reasonable accuracy.9 How-
ever, it is tedious and there is a large variation among pathol-
ogist based on experience.10 Moreover, this approach is
focused on the question of identifying a tumor or metastasis
already grown and present at the biopsy location. There is no
method to identify the probability of a cell to migrate across
the patient's blood brain barrier in the future. It is unknown
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how many cells in a tumor have this capacity, but it is
thought to only be a small percentage, thus the importance
of identifying them. It then follows that it is important to
sample a large number of cells from the patient's tumor with
high fidelity and reproducibility to detect minute differences
that relate to the probability and potential to metastasize the
brain.11 Such a technical challenge indicates a need for
methods to capture measurements of the morphologic phe-
notype of live cancer cells in 3D from an ex vivo micro-
environment representing tissue to which they metastasize,
such as the BBB. This approach differs from murine models
which are largely slow to metastasize and whose brain micro-
environments differ significantly from humans.12–14 We solve
this challenge by the use of confocal imaging combined with
mesh-based tomography of cancer cell phenotypes in a pub-
lished BBB organ on a chip model.15–18

Finally, the visual differences between cancer cells that can
metastasize to the brain and those that cannot are subtle.
Trained professionals may have difficulty telling them apart
in many cases resulting in delayed treatment.9 It is known
that treatment early in disease progression is critical to posi-
tive outcomes highlighting an opportunity for improvement.19

Artificial intelligence has already been shown to be effective
in 2D pathology and we pose that if combined with 3D confo-
cal tomography of an ex vivo blood brain barrier it could be
trained to reliably identify the minute differences between
cells with metastatic potential and those without.

Thus, in our approach (Fig. 1) we combine a BBB on a
chip with advanced imaging software (confocal tomography)
to improve the quantitation and reliability of the measure-
ments of cellular dynamic phenotypes and features as the
cells traverse the BBB (Fig. 2c and d). Using this platform, we
characterize the migratory and proliferative phenotypes of
cancer cells with varying degrees of brain metastatic potential
as well as cells from cancer patient samples with known met-
astatic potential. These results when combined with artificial

intelligence (AI), lead to a model which can be used to pre-
dict the metastatic potential of cancer cells.

Results and discussion
Brain seeking breast cancer cell line reveals a distinct μBBN
phenotypic pattern

Having confirmed the endothelium's barrier function by
small molecule exclusion and comparing it to previously pub-
lished models (Fig. 2f and g), we profiled breast cancer cell
behavior in the μBBN device to identify important phenotypic
features. After a confluent monolayer of hCMEC/D3-DsRed
cells was established, GFP-expressing MDA-MB-231 cells (tri-
ple-negative breast cancer), MDA-MB-231-BR cells (brain-seek-
ing subclone of MDA-MB-231), or MCF10A cells (normal-like
breast epithelium) were seeded onto the top chamber. After
24 or 48 h, the entire μBBN device was imaged via confocal
microscopy (see Methods) (Fig. 2c–e) to measure the final
stages in the metastatic cascade.

Fig. 3a and b show examples of diverse morphologies of
representative cells in the device, by cell line, at 24 h and 48
h, respectively.20 The four parametric variables chosen for
this study were used to characterize the cancer cells behavior.
Percent volume extravasated is the percentage (0–100%) of
the cell's volume that has passed through the barrier plane.
For this metric, MCF10A and MDA-MB-231 cells had a sub-
stantial proportion of cells that were less than 50% extrava-
sated (59% and 57%, respectively). In contrast, the MDA-MB-
231-BR had 32–35% greater proportion of cells >50% extrava-
sated (Fig. 3c, Table S1†). After 48 h, unlike the MCF10A cells
both cancer cell lines bulk populations had extravasated
more than 50% (87% and 95%, respectively). However, only
the MDA-MB-231-BR cells had a large sub-population 100%
extravasated (14% compared to <1% for all other cell lines).
The distribution of percent volume extravasated was statisti-
cally significantly different across all cell lines at both time

Fig. 1 Overview of method. The concept we demonstrate is to culture cells from a cell line or patient in an in vitro BBB device allowing the
cancer cells to undergo late stage metastatic processes. The result is then imaged via confocal tomography after 24 and 48 h. The confocal
z-stack is converted to a 3D mesh and single cell phenotypic measurements are calculated such as the distance from the endothelial layer and
shape. The feature measurements are evaluated by a trained artificial intelligence (AI) model to determine if the cells have a high, medium, or low
brain metastatic potential index.
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points according to a Kolmogorov–Smirnov test (all p-values
< 8 × 10−5) (Table S1†).

Distance extravasated (Fig. 3c, Table S1†) is the distance
in μm between the center of a cell in the stromal chamber
and the endothelial cell layer. One way to analyze the cellular
behavior is by binning the distances the cells extravasated
and studying the percentage of cells near or in the endothe-
lium (Zone 1: <50 μm, green), migratory cells (Zone 2: >50–
100 μm, yellow), and cells attracted to the astrocytes (Zone 3:
>100 μm, red). At 24 h after seeding, all cancer cell lines
tended to remain close to the plane in Zone 1 (MCF10A:
36%, MDA-MB-231: 26%, MDA-MB-231-BR: 74%). The cancer
cell lines had 3-fold as many cells in Zone 2. However, at 48
h, a subpopulation of MDA-MB-231-BR cells (Zone 2: 11%,
Zone 3: 12%) moved ∼100 μm into the bottom chamber
(max = 190.6 μm). Extravasated subpopulations are not ob-
served in the parental MDA-MB-231 (1.6% in Zones 2–3) or

the normal-like MCF10A (0.3% in Zones 2–3). The distribu-
tion of distances cancer cells traversed differed significantly
across all cell lines at both time points, by the Kolmogorov–
Smirnov test (all p-values < 8 × 10−6) (Table S1†).

The morphologies of the cells in the device were quanti-
fied by the sphericity of cells extravasated, with 1.0 being the
sphericity of a perfect sphere (Fig. 3e, Table S1,† eqn (1)) (see
Methods). Sphericity is thought to be related to RhoA and
RhoC expression and is a result of their role in migratory
phenotypes. At 24 h, the MCF10A cells were least spherical
(0.44), and the MDA-MB-231-BR cells were most spherical
(0.73). Over 48 h post-seeding in the μBBN chip, the distribu-
tion of sphericity of MCF10A (0.47) and MDA-MB-231 cells
remained approximately the same, while the MDA-MB-231-BR
cells became less spherical (0.52).

The cell populations detected within the device were sepa-
rated into two subsets to assess if the extravasated

Fig. 2 Microfluidic BBNiche device design to study brain metastatic process. (A) Schematic of μBBN device. (B) Image of the μBBN device
indicating top channel, bottom chamber, and porous membrane. (C) Confocal images of μBBN device are analyzed using 3D rendered objects.
hCMEC/D3 endothelial layer in μBBN device forms a barrier between the top and bottom chambers. Image of the μBBN from top of device
showing the area being imaged (black rectangle). (D) 3D-rendered μBBN device 24 h post-seeding with MDA-MB-231-BR cells from top-down.
Scale bar = 1000 μm. (E) Side view of the channel with insets showing cancer cells at various stages of traversing endothelium. Dashed line shows
plane fit to the endothelium. Circles highlight representative cells. Scale bar = 200 μm. (F) μBBN device at 0, 1, and 24 h after addition of 10 kDa
FITC-Dextran for device with hCMEC/D3 cells and device without. Black box indicates area of chip shown in images. (G) Quantification of perme-
ability after addition of FITC-Dextran in devices with and without hCMEC/D3 layer. Values are the average of three areas per time point with n = 3
biological replicates. Error bars indicate standard deviation. * p < 0.05.
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subpopulation of cells (>90% extravasated through the barrier)
differed in size from those that interact with but did not tra-
verse through the BBB. Illustrating this point, the MDA-MB-
231-BR cells that extravasated were 58% smaller than those
that did not (Fig. 3f, Table S2†).

Cancer and normal cell lines characterized by the system
revealed a significant dynamic range of behaviors when en-
countering the BBB. Morphological differences of the brain
metastatic cells measured over time suggest that cytoskeletal
plasticity may contribute to successful extravasation. Given
that MDA-MB-231-BR cells extravasated significantly between

24 and 48 h (Fig. 3c and d) and also exhibited a distinct shift
from high to low sphericity (Fig. 3e), these data strongly sup-
port that the cytoskeletal plasticity necessary to adopt a spher-
ical shape during extravasation enables the brain-seeking
cells to traverse the endothelial layer more easily, and once
within the brain niche, the cells become elongated to initiate
colonization. This method of spherical extravasation has been
reported previously by Allen et al. 2017 in contrast to the elon-
gated extravasation of leukocytes.21 It is possible that smaller
cells are better able to traverse the endothelial layer, as the cy-
toskeleton would have less distortion in shape and fewer tight

Fig. 3 Differences in extravasation and morphology of brain-seeking cells compared to non-brain-seeking cell in the μBBN device analyzed using
confocal tomography. (A) Representative images of morphology of cells in device. Scale bar = ∼25 μm. (B) Representative images of morphology
of cells in device at 48 h. Scale bar = ∼25 μm. (C) Violin plot of percent total volume of cells extravasated through endothelial plane at 24 (orange)
and 48 h (light blue). Dashed lines represent quartiles, longer dashed line represents the mean. (D) Strip plot of distance in μm of cancer cell cen-
troids from plane at 24 and 48 h. (E) Violin plot of sphericity of cancer cells in μBBN device at 24 and 48 h. Sphericity ranges from 1: spherical to
0: not spherical. (F) Plot of volume of each cell line in μBBN device in voxels for cells <90% and >90% extravasated. *** p < 0.0001 for 24 h
timepoint, *** p < 0.0001 for 48 h timepoint.
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junctions would need to be disrupted. The changes in sphe-
ricity observed in our system are consistent with a report by
Sanz-Moreno et al. in which they note the role of actomyosin
contractility as a means used by neoplastic cells to squeeze
through voids in a 3D matrix.22 We find the propensity of the
brain-seeking tumor cells to transition from spherical to non-
spherical cell shapes to be a distinctive feature of the popula-
tion that successfully extravasates through the membrane.

PDX-derived brain metastatic and primary tumor cells
display differential phenotypic behaviors

It was unknown if patient-derived xenografts (PDXs) would sur-
vive and colonize the BBB niche. To demonstrate applicability
of the system to patient's cells, we measured the differential be-
havior of various first-generation patient-derived-xenografts
(PDXs). We profiled triple negative breast cancer (TNBC) from
a primary tumor site (PDX9040C1), as well as triple-negative
breast (PDXbrC1), lung (PDXLuC1), ovarian (PDXOvC1), and
tongue PDX's (PDXTonC1) developed from brain metastatic
sites of those diverse primary tumor types. Fig. 4a and b show
examples of morphologies (low and high sphericity) of repre-
sentative cells in the device for each cancer cell type.

The primary breast cancer PDX (PDX9040C1) had 87% and
79% of cells that were less than 50% extravasated after seeding
at 24 and 48 h, respectively. However, in contrast, a much
higher proportions of extravasated cells were observed from
the PDXs derived from brain metastatic sites: 66% for breast
PDXbrC1, 75% for lung PDXLuC1, 58% for ovarian PDXOvC1,
and 92% for tongue PDXTonC1. Of the brain metastatic breast
cancer PDX cells, more than 50% had extravasated at 24 h and
∼4/5 (82%) had extravasated by 48 h (Fig. 4c). The mean, me-
dian, and standard deviation of percent volume extravasated

were calculated for each PDX and are reported in Table S3.†
The distribution the % extravasated for each PDX sample dif-
fered significantly (p-values < 0.05 × 10−7) (Table S3†).

The distance the PDX cancer cells extravasated into the de-
vice (Fig. 4d) also differed between PDX samples, with
PDXbrC1and PDXTonC1 samples extravasating deepest into
the device at 129 μm and 145 μm, respectively, at 24 h. This
is 2.8-fold deeper than the primary (PDX9040C1) sample.
Using the zone measurements defined above, PDX9040C1
had 34% of cells in Zone 1 at 24 h. Only 0.3% of these cells
traveled beyond Zone 1. In sharp contrast, the brain meta-
static PDXbrC1 and PDXTonC1 had a 4.6-fold and 59.0-fold
larger proportion of cells beyond Zone 1 and had 0.7% and
1.4% of cells that travelled into Zone 3. No PDX9040C1 cells
travelled into Zone 3 at 24 or 48 h. Moreover, in the PDXbrC1
samples, 87% of cells extravasated across the membrane in
contrast to 35% in the PDX9040C1. PDXOvC1 did not migrate
into the bottom chamber (>99%), remaining instead clus-
tered near the endothelial layer. The distribution of cancer
cell positions was significantly different between the brain
metastatic and primary tumor PDX samples, with p < 0.05.

The morphologies of the PDX cells in the device were also
measured by calculating the sphericity index of cells in the de-
vice over time (Fig. 4e). Similar to the previous results, the pri-
mary breast cells (PDX9040C1) maintained their sphericity
level between 24 and 48 h (0.52 and 0.51). The brain meta-
static breast cells (PDXbrC1) shifted from more spherical to
less spherical between 24 and 48 h (0.64 to 0.53). Of the other
sites of origin, lung (PDXLuC1) was the least spherical (0.53)
while ovarian (PDXOvC1) was the most (0.61). Like the breast
cell lines, the distribution of sphericity of PDXbrC1 cells
showed two distinct populations, unlike the cells of
PDX9040C1. Moreover, cells that have traversed into the brain
stromal like space (those which have a percent volume extrav-
asated >90%) showed decreased sphericity, except for the pri-
mary tumor cells. The volumes of cells that traversed the bar-
rier had smaller volumes (Fig. 4f, Table S4†). For example,
PDX9040C1 and PDXLuC1 that traversed the barrier were on
average 59% and 80% smaller than the rest of the population.

First, we observed that the PDX cells from various primary
locations survive and thrive in the in vitro human blood brain
niche system which has not been shown previously. Primary
human cells are known to be more sensitive to their environ-
ment and it has not been verified that an in vitro system can
produce viable cultures. Moreover, the fact that the patient
primary breast and breast brain metastasis mimic the behav-
ior of the cancer cell line in vitro is remarkable. Finally, it is
important to observe that the brain metastatic PDX cells
show differential phenotypes that suggest data will be needed
from many primary tumors to fully train an AI system to work
across cancer types.

Brain metastatic cancer cells degrade the endothelial barrier

We measured each cell line in the μBBN device for nine
days to observe if the cancer cells developed into pre-

Table 1 Comparison of methods to classify cancer cells and PDX cancer
cells by brain met potential

Cancer cells

Method AUC CA F1

Neural network 0.951 0.871 0.871
AdaBoost 0.950 0.876 0.876
Random forest 0.946 0.874 0.874
Tree 0.917 0.843 0.839
kNN 0.868 0.787 0.776
Logistic regression 0.848 0.779 0.783
Naïve Bayes 0.833 0.751 0.757
SGD 0.774 0.774 0.778

PDX Cancer cells

Method AUC CA F1

Neural network 0.972 0.881 0.878
Random forest 0.964 0.888 0.887
AdaBoost 0.957 0.881 0.879
Tree 0.954 0.867 0.865
Logistic regression 0.897 0.832 0.831
Naïve Bayes 0.896 0.846 0.849
kNN 0.882 0.818 0.814
SGD 0.861 0.860 0.853
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colonization clusters and how they interacted with the cellu-
lar components of the μBBN device. Fig. 5 shows that unlike
normal-like breast cells which allow the endothelium to con-
tinue to proliferate and become more dense, cancer cells
drastically degrade the endothelial barrier over time. More-
over, brain-seeking MDA-231BR cells reduced the coverage
of the endothelium to a greater degree than the parental
MDA-231 cells (Fig. 5b). Barrier degradation by cancer cells
was observed concomitant with a marked increase in the
number and organization of cancer cells in the stromal
space (Fig. 5a and c).

The majority of cells consistently clustered near the endo-
thelium after extravasation instead of migrating far into the
brain microenvironment and this is consistent with in vivo
reports.23 From our data, we pose that metastatic cells may
preferentially remain near the barrier to 1) de-regulate the
barrier tight junctions and amplify the number of barrier tra-
versing cancer cells, and/or 2) promote angiogenesis and re-
direction of the endothelial cells to support tumor coloniza-
tion of the metastatic site. These hypotheses are supported
by the observed drastic degradation of the endothelium
(Fig. 5) by the colonizing brain seeking cells. While the data

Fig. 4 Profiling of patient derived xenografts in μBBN device. (A) Representative images of morphology of PDX cells in device with low and high
sphericity. Scale bar = 25 μm. (B) Violin plot of percent total volume of cells extravasated through plane for PDXs. (C) Strip plot of distance in μm
of PDX cell center from the endothelial layer. (D) Violin plot of sphericity of PDX cells in μBBN device. (E) Box and whisker plot of volume PDX cells
in μBBN device in voxels for cells <90% and >90% extravasated *** p-value < 0.05.
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indicate that aggressive cells may remain near the barrier, it
does not account for potential repair mechanisms of the bar-
rier that may occur after tumor colonization. This means that
the window for therapeutic efficacy, especially for large mole-
cule drugs, may be small, if the barrier will undergo repair af-
ter extravasation of the cancer cells.

Comprehensive differential cancer cell behavior in vitro leads
to an index of brain metastatic potential

An important goal of this study was to confirm if the pheno-
typic expression of the cancer cells in the platform would en-
able the identification of cancer cells that had shown in vivo
brain metastatic potential. From the results obtained above
we realized that simply crossing the barrier (yes/no) is not

the only measurement needed to identify the cells with brain
metastatic potential. An analysis, of the data using simple
linear models produced poor results, therefore to evaluate
the potential of the proposed method to identify cancer cells
capable of colonizing the brain based on their behavior in an
in vitro BBB, we applied a type of AI termed machine learning
to generate an index corresponding to the probability a cell
was derived from a brain metastatic clone. This model was
developed in stages. First, we characterize the physical char-
acteristics of cells described above in the process of travers-
ing the BBB and discern the features of cells that traverse the
BBB. The predictive power of the algorithm then, depended
on its ability to predict if cancer cell subclones not previously
encountered would traverse the BBB in a specific way. The
traversal behavior of these new cells was confirmed in vivo

Fig. 5 Cancer cell interaction with the μBBN endothelium. (A) Comparison of cell line degradation of the endothelium over 7 d (168 h) after
adding the breast cells. The left and right panel shows cancer cells (green) and endothelial cells (red) 24 h and 7 d after seeding the cancer cells
respectively. (B) Comparison of the endothelial coverage at 24 h and 168 h by cell line. (C) Comparison of cancer cell coverage as a percentage of
area in the channel at 24 h and 168 h. Scale bar = 400 μm.
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for cancer cell lines. Ten machine learning algorithms
(Tables 1 and S5†) were investigated which produce a proba-
bilistic value (0–1%) of high metastatic potential. The models
were trained and cross-validated using the phenotypic behav-
ior of the cells measured previously according to the
workflow shown in Fig. 6a. The machine learning methods
we investigated include Naive Bayes, random forest, tree, lo-
gistic regression, k-nearest-neighbor (kNN), stochastic gradi-
ent descent, neural network and Adaboost (random forest)
(Table 1). To compare the methods, we scored them using
three statistics: the area under the curve (AUC), accuracy
(CA), and the weighted average of precision and recall (F1).
When used in tandem these statistics provide insights into
the performance and types of errors that the models may
make when measuring a cells metastatic potential.24 The top
three performing methods according to their AUC were the
neural network (AUC = 0.95), AdaBoost (random forest) (AUC
= 0.95), and the random forest (AUC = 0.95) (Fig. 6b).

Important translational metrics are the positive predictive
value (PPV) and negative predictive value (NPV). Both the PPV
and NPV are 0.87 (Table S6†), which is generally considered
excellent in predictive models of a clinical behavior, and of
metastatic behavior in particular.

The same models were tested on patient derived xeno-
grafts (PDX) taken from brain metastasis to determine if
brain metastatic cells could be differentiated from primary
tumor cells, under the expectation that the performance
would be likely to degrade due to their heterogeneity
(Tables 1 and S7†). The brain metastatic PDX cells were de-

fined as the metastatic cells and the primary breast cancer
PDX cells were defined as a non-brain metastatic control. The
data measured in the chip was used to test the ability of the
system to predict if cells in the chip belonged to the brain
metastatic or non-brain metastatic cell type using the meta-
static potential index (Tables 1 and S7†). This was done using
the training performed on the cancer cell lines and a fresh
training set taken from the PDX data. Moreover, this tech-
nique could identify between the different tumors of origin.
The top three performing methods were the neural network
(AUC = 0.97) followed by the random forest (AUC = 0.96) and
AdaBoost (random forest) (AUC = 0.96) (Fig. 6c, Table 1). The
resulting positive probability value (PPV) and negative proba-
bility value (NPV) are 0.91 and 0.85, respectively (Table S8†),
indeed defying the a priori prediction that these parameters
were likely to decrease, as heterogeneity increased.

There is a need for robust diagnostics that predict the fu-
ture occurrence of brain metastasis from breast or other can-
cers at the time of primary diagnosis. In addition to the
study, imaging tools are being tested for this application. Yin
et al. has shown that MRI of brain composition can predict
the number of days until brain metastases for non-small cell
lung cancer, with accuracy, sensitivity, and specificity of 70%,
75%, and 66%, respectively.25 Graesslin et al. reported on a
model to predict brain metastasis for patients with metastatic
breast cancer with an area under the curve (AUC) of 0.74.26 A
limitation of these methods is that the patient's brain must
have undergone a change prior to diagnosis and is therefore,
already susceptible to metastasis. Thus, a more direct

Fig. 6 Accurate identification of brain metastatic potential in μBBN device. (A) Schematic of model development process. This process is divided
into a training (grey) and testing (light blue) phase that outputs a probability a cell has a high metastatic potential (green). (B) Receiver operating
characteristic (ROC) curve for the AdaBoost classification methods for cell lines. Upper left corner indicates good classification accuracy. (C) ROC
curve for the AdaBoost classification methods for PDX samples.
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approach which measures the behavior of a patient's primary
cells in a brain environment, with increased accuracy and at
a lower cost would be attractive. In this context, the results,
support the measurement power of the system to predict the
behavior of the cancer cells themselves. The low cost and
quick turnaround time (24–48 h) of the μBBN device along
with the demonstrated ability to identify cancer subclones
that then metastasized to the brain in murine models, make
the device an excellent candidate to meet this technological
gap. We acknowledge more study is necessary to optimize the
brain micro-environment in the device which is a known area
of active study in the field.27–30 Devices are being developed
to include flow, additional cell types and improved barrier
function overcoming the limitations of hCMEC endothelial
cells. Regardless, we chose a realistic, simple and well under-
stood model BBB employing the widely used hCMEC that
was available at the start of the study to guide development
of the imaging algorithm and AI components of the platform
and the results are a positive contribution to the field. More-
over, the system identified patient derived cells based on
their site of origin and previously known brain metastatic
state, even though we tested a limited number of diverse
PDXs. Future work expanding the library of PDX cells
matched with knowledge of the patient outcomes would be
the basis of a clinically usable training set. Taken together,
this device could be further developed to identify cancer pa-
tients that may require additional screening and, as available,
personalized treatment strategies to minimize the probability
of brain metastasis.

Experimental section
Study design

The primary hypothesis investigated in this study were to (i)
verify that cancer cells cultured in vitro mimic known in vivo
behavior and (ii) establish that the behavior was distinct to
brain metastatic cells and could be exploited as a diagnostic.
The experiments presented were designed to compare first
established lines with known brain seeking subclones and
then to follow up with patient cells from biopsied tumors. All
data presented are the result of three independent biological
replicates with three technical replicates performed for each,
but each measurement includes hundreds of cells.

μm-blood brain niche design and validation

The complex series of processes by which a cancer cell moves
from the primary tumor site to distant sites is known as the
metastatic cascade.31–34 Initially, cancer cells invade into the
tissue around the primary site. The cells then intravasate into
the bloodstream where they may survive in the circulatory
system until they adhere to the endothelium at a distant site.
In the case of brain metastasis, the cells extravasate through
the BBB endothelium where they then colonize and grow
within the brain stroma. The μBBN device (Fig. 2a and b) was
designed to study the late and most definitively clinically im-
pactful steps of the brain metastatic cascade: adherence, ex-

travasation, and colonization. It is based on previously pub-
lished and accepted models such as the one by Wang et al.,
Marino et al., Esch et al., and Chen et al.35–38

The μBBN we designed, is composed of two chambers sep-
arated by a 5 μm microporous membrane (Fig. 2b and S1†).
The device is fabricated from polydimethylsiloxane (PDMS)
because of its inertness during cell culture. The upper cham-
ber mimics the brain vasculature with a lining of human ce-
rebral microvascular endothelial cells, hCMEC/D3. The lower
chamber is filled with hTERT immortalized normal human
astrocytes (NHA) suspended in a type I collagen matrix. The
porous membrane is sized to separate the upper and lower
chambers without obstructing the inlets and outlets. After
various pilot trials, we chose 5 μm pore membranes to opti-
mize three functions: support for the endothelial layer, ease
of extravasation, and clarity of imaging. Micropipette tips are
placed in each inlet/outlet port to serve as medium reservoirs
and facilitate easy loading of liquids and cells. The assem-
bled chip is bonded to a 50 mm × 75 mm glass slide and po-
sitioned using an alignment fixture (Fig. 2c). This chip has
four independent sets of chambers imprinted on it for ease
of replication of each experiment.

To use the engineered brain niche to study cancer cell ex-
travasation, we first validated the barrier function of the hu-
man cerebral microvascular endothelial cell (hCMEC/D3)
monolayer in the device. The hCMEC/D3 cells formed a mono-
layer in the upper channel over a 3 day period post-seeding
(Fig. S4b†). Co-culture of the astrocytes and endothelial cells re-
quired that their respective media be mixed at a 50 : 50 ratio to
promote simultaneous healthy growth of both cell lines and
barrier formation (Fig. S2†). The endothelial barrier permeabil-
ity was characterized using FITC-Dextran exclusion.

Small molecule membrane transfer measurements

We conducted a FITC-Dextran exclusion assay in which 10
kDa FITC-Dextran was introduced to the upper chamber. Dif-
fusion of the dye was measured over 24 h using the relative
fluorescence intensity (RFI) approach (Fig. 2f and g). The
intensity of the region measured was plotted as a percentage
of the normalized intensity of a calibration solution of FITC-
DEX.39 There was an increase in dye content over the first
hour in the lower chamber, in line with other models in the
literature,32 with a maximal RFI of 4% followed by a stable
diffusion (Fig. 2g). In contrast, the diffusion was significantly
higher, with a maximal RFI of 74% (p < 0.05) when no endo-
thelial layer was present.

FITC-Dextran conjugated dye (Sigma-Aldrich, CAS: 60842-
46-8, 5 mg ml−1, 10 kDa) was used to assess total integration
fluorescence of small molecules across the endothelial layer
in the device. Images were taken using an inverted fluores-
cent microscope with a 10× objective. The fluorescent signal
at the interface between the upper and lower chamber was
measured at 1, 5, 10, 20, 60 and 1440 minutes. Three images
were taken at the interface between the upper and lower
chamber at three pre-determined locations along the device
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(center, 5 mm from top and 5 mm from bottom) for three
channels and n = 3 biological replicates.

Cell culture and reagents

MCF10A (ATCC CRL-10317) cells were maintained in 50 : 50
DMEM : F12 medium (Corning 10-090-CV) supplemented with
5% horse serum, 10 μg ml−1 insulin, 0.5 μg ml−1 hydrocorti-
sone, 0.02 μg ml−1 epidermal growth factor, 0.1 μg ml−1 chol-
era toxin, and 5 mL antibiotic-antimycotic (Gibco 15240062).
MCF10A cells were stained using Cell Tracker Green
according to the manufacturer's protocol. MDA-MB-231 and
MDA-MB-231-BR-GFP cells were obtained from Patricia Steeg,
PhD and were maintained in DMEM (Corning 10-013-CV),
supplemented with 10% FBS and 5 mL antibiotic-antimycotic
(Gibco 15240 062). hCMEC/D3 (EMD Millipore SCC066) cells
were maintained in EGM-2 medium (Lonza CC-3162). MDA-
MB-231-GFP fluorescent cells were created by transfecting
MDA-MB-231 cells with empty vector pLLEV-GFP lentivirus.
hCMEC/D3-DsRed fluorescent cells were created by trans-
fecting hCMEC/D3 cells with empty vector pLL 3.7-dsRed len-
tivirus. Normal human astrocytes (NHA) were obtained from
Lonza (CC-2565) and were immortalized using lentiviral in-
duced hTERT expression and were maintained in AGM media
(Lonza CC-3186). Lentivirus was created using pLOX-TERT-
iresTK lentiviral vector obtained from Addgene (12245) and
packaging vectors psPAX2 and pMD2.G also obtained from
Addgene (12 260 and 12 259) in HEK-293 T cells. Cells were
grown at 37 °C in 5% CO2.

Patient derived xenografts

Human tumor tissue was collected at the University of Michi-
gan under approved IRB protocols at University of Michigan.
Animal studies were performed under approved University of
Michigan institutional animal care and use committee
(IACUC) protocols.

Freshly resected human tumor tissue was immediately
and directly implanted into eight-week-old NSG mice (Jack-
son lab). Breast tumor tissue was implanted into the mam-
mary fat pad and non-breast tumor tissue was implanted into
both flanks. Tumor growth was monitored once a week and
were harvested when the tumor size reached 0.6–0.7 cm.

Excised tumors were cut into 2–4 mm pieces and dissoci-
ated to single cell suspensions using a gentle MACS dissoci-
ation platform (Miltenyi Biotec) according to the manufac-
turer's protocol. The single cell suspensions were counted
using a hematocytometer, then resuspended in 80 μL of 1X
PBS, pH 7.4 supplemented with 0.5% BSA and 20 μL of
mouse cell depletion cocktail (cat# 130-104-694) containing
magnetically labeled antibodies per 107 cells. Samples were
incubated at 4 °C for 15 minutes then applied to a LS col-
umn to deplete the magnetized mouse cells from the puri-
fied human tumor cells. The purified human tumor cells
were then stained with Cell Tracker Green according to
the manufacturer's protocol, then counted using a
hematocytometer before use.

Live subject statement

All human tissues were collected from patients treated at
Michigan Medicine, who provided written, in-person in-
formed consent under a protocol approved by the University
of Michigan Institutional Review Board (IRB).

Seeding microfluidic device

The bottom chamber of the devices was seeded with 1 × 106

NHA suspended in a solution of 1 mL of 3 mg mL−1 PureCol
type I bovine collagen with 128 μL 0.8 M NaHCO3 and 40 μL
10X high-glucose (250 mM) DMEM and incubated at 37 °C
for one hour. The top chamber was coated with 2% growth-
factor reduced Matrigel in AGM and incubated at 37 °C for
one hour. hCMEC cells were seeded in the top chamber by
pipetting 30 μL of cells at 1 million cells per mL in 50 : 50
AGM/EGM-2 in both inlet and outlet twice, with 15 min be-
tween each inoculation. Devices were then incubated at 37 °C
and 5% CO2, changing media in both chambers every 12 h.
Cancer and normal-like cells were seeded into the top cham-
ber inlet of a confluent device at a density of 3 × 104 cells.

Measurement of the cell attributes using confocal
tomography

Extracting meaningful data from images of the organ-on-a-
chip device poses a major challenge. Thus, we developed soft-
ware based on the Visualization tool kit (VTK) library, termed
confocal tomography, to measure the extravasation behavior
of cancer cells relative to the endothelial layer.20 In brief, the
algorithm fits a 2D surface to the endothelial layer using the
centers of the cells (centroids) as points on the plane. Then,
each cancer cell is converted from the confocal z-stack into a
3D object. Each 3D cancer cell object is then compared to the
endothelial layer plane to measure the cell's morphological
and functional metrics. To calculate the percent volume of
the cell that has extravasated across the endothelial plane the
cells 3D mesh is cut using a Boolean operation and the
resulting hole closed to divide the cell into two bodies. A rep-
resentative result of these measurements is shown in Fig. 2e.

Sphericity was measured by comparing the volume and
area of the cell, the ratio of which may deviate from a perfect
sphere according to the equation below:

S
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 1

3
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Statistical analysis

Analysis was performed using Python and R Studio. Compari-
sons of populations of cells were made using a Smirnov–Kol-
mogorov test and Kruskal–Wallis Rank Sum Test with a
p-value test at 0.05. The double-sided t-test was used to com-
pare the means of the RFI results for μBBN chips with an
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endothelial and no-endothelial layer. The means of the cell
area coverage in Fig. 4 and 5 were tested using a Kruskal–
Wallis test and if significant also by a pairwise comparison
Tukey and Kramer (Nemenyi) test.

Artificial intelligence machine learning algorithm

Binary classification was performed in Orange (Fig. 6a). The
data was filtered to remove bad measurements, defined as
those that failed a Boolean operation or giving parametric var-
iable values outside of known bounds (−100–200, 0–1 and 0–
2000). Using the cell lines as an example the MDA-MB-231-BR-
GFP cells were labeled as brain metastatic and the remaining
cell lines were labelled as non-brain metastatic. The features
used to classify cells included all parametric variables. The
data was sampled into a training (80%) and test set (20%).
The training set was stratified and cross-validated using 10
folds against each model/classifier. The models/classifiers
studied included neural network, Naïve Bayes, random forest,
tree, logistic regression, kNN, stochastic gradient descent and
AdaBoost latched to random forest. After training the data the
test data was used to score the performance of the model by
classifying the cells in the chip according to the probability,
they were in the brain metastatic cell line from 0 to 1. The
model performance was ranked according to the area under
the curve (AUC) of the ROC, the accuracy and the F1 score.
When used in tandem, these statistics provide insights into
the performance and types of errors that the models may
make when measuring a cell's metastatic potential.24

Breast (cancer) cell lines

All laboratory Breast cell lines (MCF10A, MDA-MB-231) used
in this research have been authenticated via ATCC's STR pro-
filing service prior to fluorescent labelling.

Conclusion

In conclusion, we presented the development and potential
of a platform designed to identify the subtle phenotypic dif-
ferences between cancer cells that show brain metastatic be-
havior and those that do not, based on their behavior in a
brain like tumor micro-environment with potential for trans-
lation to the clinic as a brain metastatic predictive diagnostic
given additional study. The method was validated by measur-
ing the extravasation and metastatic events of breast cancer
cells and PDX cancer cells in the device. Future work will ex-
pand the library of patient samples used to train the system
to improve its clinical applicability. Additional work will use
the device to evaluate the molecular determinants of the mi-
gration, survival of metastatic cancer cells and to test the effi-
cacy of potential new treatments on metastatic cancer within
the brain niche.
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